Monodisperse N‐Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length

نویسندگان

  • Diego Cortizo-Lacalle
  • Juan P Mora-Fuentes
  • Karol Strutyński
  • Akinori Saeki
  • Manuel Melle-Franco
  • Aurelio Mateo-Alonso
چکیده

The properties of graphene nanoribbons are highly dependent on structural variables such as width, length, edge structure, and heteroatom doping. Therefore, atomic precision over all these variables is necessary for establishing their fundamental properties and exploring their potential applications. An iterative approach is presented that assembles a small and carefully designed molecular building block into monodisperse N-doped graphene nanoribbons with different lengths. To showcase this approach, the synthesis and characterisation of a series of nanoribbons constituted of 10, 20 and 30 conjugated linearly-fused rings (2.9, 5.3, and 7.7 nm in length, respectively) is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of nitrogen-doped zigzag-edge peripheries: dibenzo-9a-azaphenalene as repeating unit.

A bottom-up approach toward stable and monodisperse segments of graphenes with a nitrogen-doped zigzag edge is introduced. Exemplified by the so far unprecedented dibenzo-9a-azaphenalene (DBAPhen) as the core unit, a versatile synthetic concept is introduced that leads to nitrogen-doped zigzag nanographenes and graphene nanoribbons.

متن کامل

Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons

On the basis of the density functional theory combined with the Keldysh nonequilibrium Green's function method, we investigate the spin-dependent transport properties of single-edge phosphorus-doped ZGNR systems with different widths. The results show a perfect spin filtering effect reaching 100% at a wide bias range in both parallel (P) and antiparallel (AP) spin configurations for all systems...

متن کامل

Heer Ballistic Transport in Graphene Nanoribbons

Graphene nanoribbons are essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about 10 nanometers between scattering events, resulting in minimum sheet resistances of about 1 kW In contrast 40 nm wide graphene nanoribbons that are epitaxially grown on silicon carbide...

متن کامل

Phase coherent transport in graphene nanoribbons and graphene nanoribbon arrays

We have experimentally investigated quantum interference corrections to the conductivity of graphene nanoribbons at temperatures down to 20 mK studying both weak localization (WL) and universal conductance fluctuations (UCFs). Since in individual nanoribbons at milli-Kelvin temperatures the UCFs strongly mask the weak localization feature we employ both gate averaging and ensemble averaging to ...

متن کامل

Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction.

Nitrogen-doped graphene nanoribbon (N-GNR) nanomaterials with different nitrogen contents have been facilely prepared via high temperature pyrolysis of graphene nanoribbons (GNR)/polyaniline (PANI) composites. Here, the GNRs with excellent surface integration were prepared by longitudinally unzipping the multiwalled carbon nanotubes. With a high length-to-width ratio, the GNR sheets are prone t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2018